Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Build real-world machine learning solutions from scratch using R-no advanced math or prior coding experience required.
This second edition of Machine Learning and Data Science offers an accessible, hands-on introduction to the core principles of machine learning, statistical modeling, and practical data science-without overwhelming readers with complex formulas or technical jargon. Perfect for beginners, analysts, and business professionals transitioning into data science, this book provides a complete project-based roadmap from data wrangling to model deployment using the powerful R programming language. Whether you're analyzing marketing trends, predicting customer behavior, or detecting fraud, this book equips you with the foundation needed to solve real problems using machine learning.
Author and data scientist Daniel D. Gutierrez draws on his experience teaching at UCLA and years of industry practice to guide you through essential topics, including regression, classification, clustering, feature engineering, and model evaluation. You'll explore supervised and unsupervised learning techniques, apply visualization strategies, and build intuitive workflows that mirror the data science process used by professionals across finance, healthcare, marketing, and more. Unlike overly theoretical texts, this guide emphasizes application-what to do, why to do it, and how to do it in R.
Inside, you'll find step-by-step tutorials, use case examples from Kaggle competitions, and easy-to-follow code snippets that let you apply machine learning concepts immediately. Learn how to access and clean real-world data sets, implement algorithms like decision trees, random forests, logistic regression, and k-means clustering, and avoid common pitfalls such as data leakage and overfitting. Move from exploratory data analysis to powerful predictive modeling.
Whether you're a student, aspiring data scientist, or working analyst seeking to expand your skills, this is your essential, beginner-friendly guide to statistical learning and machine learning with R.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Build real-world machine learning solutions from scratch using R-no advanced math or prior coding experience required.
This second edition of Machine Learning and Data Science offers an accessible, hands-on introduction to the core principles of machine learning, statistical modeling, and practical data science-without overwhelming readers with complex formulas or technical jargon. Perfect for beginners, analysts, and business professionals transitioning into data science, this book provides a complete project-based roadmap from data wrangling to model deployment using the powerful R programming language. Whether you're analyzing marketing trends, predicting customer behavior, or detecting fraud, this book equips you with the foundation needed to solve real problems using machine learning.
Author and data scientist Daniel D. Gutierrez draws on his experience teaching at UCLA and years of industry practice to guide you through essential topics, including regression, classification, clustering, feature engineering, and model evaluation. You'll explore supervised and unsupervised learning techniques, apply visualization strategies, and build intuitive workflows that mirror the data science process used by professionals across finance, healthcare, marketing, and more. Unlike overly theoretical texts, this guide emphasizes application-what to do, why to do it, and how to do it in R.
Inside, you'll find step-by-step tutorials, use case examples from Kaggle competitions, and easy-to-follow code snippets that let you apply machine learning concepts immediately. Learn how to access and clean real-world data sets, implement algorithms like decision trees, random forests, logistic regression, and k-means clustering, and avoid common pitfalls such as data leakage and overfitting. Move from exploratory data analysis to powerful predictive modeling.
Whether you're a student, aspiring data scientist, or working analyst seeking to expand your skills, this is your essential, beginner-friendly guide to statistical learning and machine learning with R.