Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The landscape of healthcare is transformed by the integration of advanced data analytics, especially in the realm of multi-source data analysis. By combining diverse datasets, such as electronic health records (EHRs), genetic information, wearable device data, and patient-reported outcomes, healthcare providers can gain a comprehensive understanding of a patient's health status. This approach creates more personalized treatment plans, enhances diagnostic accuracy, and supports early detection of potential health issues. Communication between various data sources allows for the identification of hidden trends and patterns, improving predictive capabilities and optimizing patient outcomes. As healthcare systems adopt this data-driven process, it is crucial to address challenges related to data privacy, integration, and the interpretation of complex datasets, ensuring the potential benefits of multi-source data analysis are realized in ethical and effective ways. Optimizing Patient Outcomes Through Multi-Source Data Analysis in Healthcare explores the transformative potential of big data and AI in healthcare, focusing on informed decision-making. It delves into the integration of vast, diverse datasets, analyzed through AI algorithms to enhance patient outcomes and operational efficiency. This book covers topics such as automation, machine learning, and neural networks, and is a useful resource for healthcare professionals, computer engineers, business owners, academicians, researchers, and data scientists.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The landscape of healthcare is transformed by the integration of advanced data analytics, especially in the realm of multi-source data analysis. By combining diverse datasets, such as electronic health records (EHRs), genetic information, wearable device data, and patient-reported outcomes, healthcare providers can gain a comprehensive understanding of a patient's health status. This approach creates more personalized treatment plans, enhances diagnostic accuracy, and supports early detection of potential health issues. Communication between various data sources allows for the identification of hidden trends and patterns, improving predictive capabilities and optimizing patient outcomes. As healthcare systems adopt this data-driven process, it is crucial to address challenges related to data privacy, integration, and the interpretation of complex datasets, ensuring the potential benefits of multi-source data analysis are realized in ethical and effective ways. Optimizing Patient Outcomes Through Multi-Source Data Analysis in Healthcare explores the transformative potential of big data and AI in healthcare, focusing on informed decision-making. It delves into the integration of vast, diverse datasets, analyzed through AI algorithms to enhance patient outcomes and operational efficiency. This book covers topics such as automation, machine learning, and neural networks, and is a useful resource for healthcare professionals, computer engineers, business owners, academicians, researchers, and data scientists.