Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This book offers engineering students a concise and practical introduction to data science - no prior experience required. Designed specifically for those new to programming and statistical analysis, the book introduces the essential tools and concepts behind today's predictive AI systems.Based on a proven course at Purdue University, Introduction to Data Science for Engineering Students equips students with core data science knowledge, such as Python programming, data analysis techniques, and key foundational statistical concepts necessary for predictive modelling. Through real-world engineering examples (e.g. predicting engine efficiency), students learn how to visualize and analyze real experimental data, apply probability to manage uncertainty, and learn how to build reliable predictive models step-by-step.Covering everything from data arrays and visualization to logistic regression and maximum likelihood estimation, the book prepares students to become data-ready in less than a semester. By the end of the book, readers will have gained not only theoretical insight but also hands-on experience with tools they can use immediately in labs, internships, or future careers. This is a must-have primer for any engineering student seeking to become data-literate in an increasingly AI-driven world.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This book offers engineering students a concise and practical introduction to data science - no prior experience required. Designed specifically for those new to programming and statistical analysis, the book introduces the essential tools and concepts behind today's predictive AI systems.Based on a proven course at Purdue University, Introduction to Data Science for Engineering Students equips students with core data science knowledge, such as Python programming, data analysis techniques, and key foundational statistical concepts necessary for predictive modelling. Through real-world engineering examples (e.g. predicting engine efficiency), students learn how to visualize and analyze real experimental data, apply probability to manage uncertainty, and learn how to build reliable predictive models step-by-step.Covering everything from data arrays and visualization to logistic regression and maximum likelihood estimation, the book prepares students to become data-ready in less than a semester. By the end of the book, readers will have gained not only theoretical insight but also hands-on experience with tools they can use immediately in labs, internships, or future careers. This is a must-have primer for any engineering student seeking to become data-literate in an increasingly AI-driven world.