Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This textbook addresses the key questions in both classical thermodynamics and statistical thermodynamics: Why are the thermodynamic properties of a nano-sized system different from those of a macroscopic system of the same substance? Why and how is entropy defined in thermodynamics, and how is the entropy change calculated when dissipative heat is involved? What is an ensemble and why is its theory so successful?Translated from a highly successful Chinese book, this expanded English edition contains many updated sections and several new ones. They include the introduction of the grand canonical ensemble, the grand partition function and its application to ideal quantum gases, a discussion of the mean field theory of the Ising model and the phenomenon of ferromagnetism, as well as a more detailed discussion of ideal quantum gases near T = 0, for both Fermi and Bose gases.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This textbook addresses the key questions in both classical thermodynamics and statistical thermodynamics: Why are the thermodynamic properties of a nano-sized system different from those of a macroscopic system of the same substance? Why and how is entropy defined in thermodynamics, and how is the entropy change calculated when dissipative heat is involved? What is an ensemble and why is its theory so successful?Translated from a highly successful Chinese book, this expanded English edition contains many updated sections and several new ones. They include the introduction of the grand canonical ensemble, the grand partition function and its application to ideal quantum gases, a discussion of the mean field theory of the Ising model and the phenomenon of ferromagnetism, as well as a more detailed discussion of ideal quantum gases near T = 0, for both Fermi and Bose gases.