Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This thesis focuses on the energy band engineering of graphene. It presents pioneering findings on the controlled growth of graphene and graphene-based heterostructures, as well as scanning tunneling microscopy/scanning tunneling spectroscopy (STM/STS) studies on their electronic structures. The thesis primarily investigates two classes of graphene-based systems: (i) twisted bilayer graphene, which was synthesized on Rh substrates and manifests van Hove singularities near Fermi Level, and (ii) in-plane h-BN-G heterostructures, which were controllably synthesized in an ultrahigh vacuum chamber and demonstrate intriguing electronic properties on the interface. In short, the thesis offers revealing insights into the energy band engineering of graphene-based nanomaterials, which will greatly facilitate future graphene applications.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This thesis focuses on the energy band engineering of graphene. It presents pioneering findings on the controlled growth of graphene and graphene-based heterostructures, as well as scanning tunneling microscopy/scanning tunneling spectroscopy (STM/STS) studies on their electronic structures. The thesis primarily investigates two classes of graphene-based systems: (i) twisted bilayer graphene, which was synthesized on Rh substrates and manifests van Hove singularities near Fermi Level, and (ii) in-plane h-BN-G heterostructures, which were controllably synthesized in an ultrahigh vacuum chamber and demonstrate intriguing electronic properties on the interface. In short, the thesis offers revealing insights into the energy band engineering of graphene-based nanomaterials, which will greatly facilitate future graphene applications.