Interconnect and Temperature Aware Unified Physical and High Level Synthesis, Vyas Krishnan,Srinivas Katkoori (9789400718920) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

In Victoria? Order in-stock items by Sunday 14 December to get your gifts by Christmas! Or find the deadline for your state here.

 
Hardback

Interconnect and Temperature Aware Unified Physical and High Level Synthesis

$447.99
Sign in or become a Readings Member to add this title to your wishlist.

The exponential scaling in CMOS transistor sizes over the past three decades have enabled spectacular advances in integrated circuit technology, allowing the integration of more than a billion transistors in modern very large-scale integrated (VLSI) circuits. Over the last four decades, transistor scaling has followed Moore’s law, and according to projections made by the International Technology Roadmap for Semiconductors (ITRS), minimum feature sizes are expected to reach 22nm by 2012. The primary drivers for transistor scaling are the associated benefits of lower system costs, improved performance, and system reliability.

However, continuous device and interconnect scaling trends in deep submicron designs have created new challenges for integrated circuit designers such as increased interconnect delays due to rising parasitic resistance and capacitance of on-chip wiring, increased on-chip power densities, and performance and reliability problems posed by on-chip thermal gradients and thermal-hotspots. Thus, the major challenge is in achieving reliable, high-performance system implementations, all the way from the micro-architecture level down to the layout level. In order to realize such an implementation, a unified physical-level and high-level synthesis method becomes paramount, to ensure predictability of HLS design flows and minimize design iterations.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Hardback
Publisher
Springer
Country
NL
Date
1 January 2015
Pages
250
ISBN
9789400718920

The exponential scaling in CMOS transistor sizes over the past three decades have enabled spectacular advances in integrated circuit technology, allowing the integration of more than a billion transistors in modern very large-scale integrated (VLSI) circuits. Over the last four decades, transistor scaling has followed Moore’s law, and according to projections made by the International Technology Roadmap for Semiconductors (ITRS), minimum feature sizes are expected to reach 22nm by 2012. The primary drivers for transistor scaling are the associated benefits of lower system costs, improved performance, and system reliability.

However, continuous device and interconnect scaling trends in deep submicron designs have created new challenges for integrated circuit designers such as increased interconnect delays due to rising parasitic resistance and capacitance of on-chip wiring, increased on-chip power densities, and performance and reliability problems posed by on-chip thermal gradients and thermal-hotspots. Thus, the major challenge is in achieving reliable, high-performance system implementations, all the way from the micro-architecture level down to the layout level. In order to realize such an implementation, a unified physical-level and high-level synthesis method becomes paramount, to ensure predictability of HLS design flows and minimize design iterations.

Read More
Format
Hardback
Publisher
Springer
Country
NL
Date
1 January 2015
Pages
250
ISBN
9789400718920