Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In spite of the impressive predictive power and strong mathematical structure of quantum mechanics, the theory has always suffered from important conceptual problems. Some of these have never been solved. Motivated by this state of affairs, a number of physicists have worked together for over thirty years to develop stochastic electrodynamics, a physical theory aimed at finding a conceptually satisfactory, realistic explanation of quantum phenomena.
This is the first book to present a comprehensive review of stochastic electrodynamics, from its origins to present-day developments. After a general introduction for the non-specialist, a critical discussion is presented of the main results of the theory as well as of the major problems encountered. A chapter on stochastic optics and some interesting consequences for local realism and the Bell inequalities is included. In the final chapters the authors propose and develop a new version of the theory that brings it in closer correspondence with quantum mechanics and sheds some light on the wave aspects of matter and the linkage with quantum electrodynamics.
Audience: The volume will be of interest to scholars and postgraduate students of theoretical and mathematical physics, foundations and philosophy of physics, and teachers of theoretical physics and quantum mechanics, electromagnetic theory, and statistical physics (stochastic processes).
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In spite of the impressive predictive power and strong mathematical structure of quantum mechanics, the theory has always suffered from important conceptual problems. Some of these have never been solved. Motivated by this state of affairs, a number of physicists have worked together for over thirty years to develop stochastic electrodynamics, a physical theory aimed at finding a conceptually satisfactory, realistic explanation of quantum phenomena.
This is the first book to present a comprehensive review of stochastic electrodynamics, from its origins to present-day developments. After a general introduction for the non-specialist, a critical discussion is presented of the main results of the theory as well as of the major problems encountered. A chapter on stochastic optics and some interesting consequences for local realism and the Bell inequalities is included. In the final chapters the authors propose and develop a new version of the theory that brings it in closer correspondence with quantum mechanics and sheds some light on the wave aspects of matter and the linkage with quantum electrodynamics.
Audience: The volume will be of interest to scholars and postgraduate students of theoretical and mathematical physics, foundations and philosophy of physics, and teachers of theoretical physics and quantum mechanics, electromagnetic theory, and statistical physics (stochastic processes).