Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Integral equations-a reference text
Hardback

Integral equations-a reference text

$620.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The title ‘Integral equations’ covers many things which have very little connection with each other. However, they are united by the following important feature. In most cases, the equations involve an unknown function operated on by a bounded and often compact operator defined on some Banach space. The aim of the book is to list the main results concerning integral equations. The classical Fredholm theory and Hilbert-Schmidt theory are presented in Chapters II and III. The preceding Chapter I contains a description of the most important types of integral equations which can be solved in ‘closed’ form. Chapter IV is an important addition to Chapters II and III, as it contains the theory of integral equations with non-negative kernels. The development of this theory is mainly due to M. G. Krein. The content of the first four chapters is fairly elementary. It is well known that the Fredholm theory has been generalized for equations with compact operators. Chapter V is devoted tothis generalization. In Chapter VI one-dimensional (i.e. with one dependent variable) singular integral equations are considered. The last type of equations differ from that considered in the preceding chapters in that singular integral operators are not compact but only bounded in the usual functional spaces.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Springer
Country
NL
Date
9 January 1975
Pages
443
ISBN
9789028603936

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The title ‘Integral equations’ covers many things which have very little connection with each other. However, they are united by the following important feature. In most cases, the equations involve an unknown function operated on by a bounded and often compact operator defined on some Banach space. The aim of the book is to list the main results concerning integral equations. The classical Fredholm theory and Hilbert-Schmidt theory are presented in Chapters II and III. The preceding Chapter I contains a description of the most important types of integral equations which can be solved in ‘closed’ form. Chapter IV is an important addition to Chapters II and III, as it contains the theory of integral equations with non-negative kernels. The development of this theory is mainly due to M. G. Krein. The content of the first four chapters is fairly elementary. It is well known that the Fredholm theory has been generalized for equations with compact operators. Chapter V is devoted tothis generalization. In Chapter VI one-dimensional (i.e. with one dependent variable) singular integral equations are considered. The last type of equations differ from that considered in the preceding chapters in that singular integral operators are not compact but only bounded in the usual functional spaces.

Read More
Format
Hardback
Publisher
Springer
Country
NL
Date
9 January 1975
Pages
443
ISBN
9789028603936