Achievements in Photovoltaic Technologies within the Next Decades, Fouad Soliman, Hamed Mira, Islam Alhindawy (9786208442194) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

 
Paperback

Achievements in Photovoltaic Technologies within the Next Decades

$285.99
Sign in or become a Readings Member to add this title to your wishlist.

Solar-cell efficiency is the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by the solar cell. The efficiency of the solar cells used in a photovoltaic system, in combination with latitude and climate, determines the annual energy output of the system. Usually solar panels are exposed to sunlight for longer than this in a given day, but the solar irradiance is less than 1000 W/m2 for most of the day. A solar panel can produce more when the Sun is high in Earth's sky and produces less in cloudy conditions, or when the Sun is low in the sky. The Sun is lower in the sky in the winter. Several factors affect a cell's conversion efficiency, including its reflectance, thermodynamic efficiency, charge carrier separation efficiency, charge carrier collection efficiency and conduction efficiency values. Because these parameters can be difficult to measure directly, other parameters are measured instead, including quantum efficiency, open-circuit voltage (VOC) ratio, and ? Fill factor. Reflectance losses are accounted for by the quantum efficiency value, as they affect external quantum efficiency.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
9 April 2025
Pages
160
ISBN
9786208442194

Solar-cell efficiency is the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by the solar cell. The efficiency of the solar cells used in a photovoltaic system, in combination with latitude and climate, determines the annual energy output of the system. Usually solar panels are exposed to sunlight for longer than this in a given day, but the solar irradiance is less than 1000 W/m2 for most of the day. A solar panel can produce more when the Sun is high in Earth's sky and produces less in cloudy conditions, or when the Sun is low in the sky. The Sun is lower in the sky in the winter. Several factors affect a cell's conversion efficiency, including its reflectance, thermodynamic efficiency, charge carrier separation efficiency, charge carrier collection efficiency and conduction efficiency values. Because these parameters can be difficult to measure directly, other parameters are measured instead, including quantum efficiency, open-circuit voltage (VOC) ratio, and ? Fill factor. Reflectance losses are accounted for by the quantum efficiency value, as they affect external quantum efficiency.

Read More
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
9 April 2025
Pages
160
ISBN
9786208442194