Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The rapid evolution of the Internet of Vehicles (IoV) introduces significant advancements in smart transportation systems, yet also presents critical challenges in data security, privacy, and real-time decision-making. This study proposes a Federated Learning (FL)-based security framework for IoV, integrating Federated Averaging (FedAvg) and Differential Privacy (DP) to enhance cybersecurity while preserving data privacy. The proposed model leverages decentralized machine learning techniques to mitigate security threats, reduce reliance on raw data transmission, and prevent unauthorized access to sensitive vehicle and user data. Through extensive empirical analysis using real-world cybersecurity datasets, this research evaluates the performance, scalability, and efficiency of FL-based security mechanisms compared to conventional approaches.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The rapid evolution of the Internet of Vehicles (IoV) introduces significant advancements in smart transportation systems, yet also presents critical challenges in data security, privacy, and real-time decision-making. This study proposes a Federated Learning (FL)-based security framework for IoV, integrating Federated Averaging (FedAvg) and Differential Privacy (DP) to enhance cybersecurity while preserving data privacy. The proposed model leverages decentralized machine learning techniques to mitigate security threats, reduce reliance on raw data transmission, and prevent unauthorized access to sensitive vehicle and user data. Through extensive empirical analysis using real-world cybersecurity datasets, this research evaluates the performance, scalability, and efficiency of FL-based security mechanisms compared to conventional approaches.