Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This study presents a hybrid model that leverages the strengths of K-means clustering and Support Vector Machines (SVM) for classifying online product reviews. K-means is used to group reviews into clusters, reducing data complexity and improving feature extraction. Subsequently, SVM is employed to classify the clustered data into positive, negative, or neutral sentiments. The combined approach enhances classification accuracy, reduces computational cost, and effectively handles large datasets. Experimental results demonstrate that the proposed model outperforms traditional standalone classifiers in terms of precision, recall, and overall accuracy.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This study presents a hybrid model that leverages the strengths of K-means clustering and Support Vector Machines (SVM) for classifying online product reviews. K-means is used to group reviews into clusters, reducing data complexity and improving feature extraction. Subsequently, SVM is employed to classify the clustered data into positive, negative, or neutral sentiments. The combined approach enhances classification accuracy, reduces computational cost, and effectively handles large datasets. Experimental results demonstrate that the proposed model outperforms traditional standalone classifiers in terms of precision, recall, and overall accuracy.