Time Series Analysis of Climatic Change, Mani N, Rithika S, Sivakumaran P K (9786207996124) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

In Victoria? Order in-stock items by Sunday 14 December to get your gifts by Christmas! Or find the deadline for your state here.

Time Series Analysis of Climatic Change
Paperback

Time Series Analysis of Climatic Change

$156.99
Sign in or become a Readings Member to add this title to your wishlist.

This book explores the importance of accurate rainfall forecasting for water resource management, agriculture, and disaster preparedness. It presents a comparative analysis of two forecasting models-Support Vector Regression (SVR) and Seasonal Auto Regressive Integrated Moving Average (SARIMA)-using historical rainfall data from 2008 to 2021 to predict trends from 2022 to 2026. Through statistical and visualization techniques such as trend analysis, moving averages, box plots, heatmaps, Z-scores, and density plots, the study identifies patterns and anomalies in rainfall data. While both models show good predictive ability, SVR demonstrates superior performance, especially in capturing complex, non-linear patterns. The book highlights the advantages of integrating machine learning methods with traditional statistical tools to improve rainfall forecasting and support data-driven decisions in agriculture, environmental planning, and climate resilience.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
24 July 2025
Pages
88
ISBN
9786207996124

This book explores the importance of accurate rainfall forecasting for water resource management, agriculture, and disaster preparedness. It presents a comparative analysis of two forecasting models-Support Vector Regression (SVR) and Seasonal Auto Regressive Integrated Moving Average (SARIMA)-using historical rainfall data from 2008 to 2021 to predict trends from 2022 to 2026. Through statistical and visualization techniques such as trend analysis, moving averages, box plots, heatmaps, Z-scores, and density plots, the study identifies patterns and anomalies in rainfall data. While both models show good predictive ability, SVR demonstrates superior performance, especially in capturing complex, non-linear patterns. The book highlights the advantages of integrating machine learning methods with traditional statistical tools to improve rainfall forecasting and support data-driven decisions in agriculture, environmental planning, and climate resilience.

Read More
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
24 July 2025
Pages
88
ISBN
9786207996124