Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

 
Paperback

Metamorph Face Maker Using Artificial Intelligence

$65.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Face morphing attack is proved to be a serious threat to the existing face recognition systems. Although a few face morphing detection methods have been put forward, the face morphing accomplice's facial restoration remains a challenging problem. In this paper, a face de- morphing generative adversarial network (FD-GAN) is proposed to restore the accomplice's facial image. It utilizes a symmetric dual network architecture and two levels of restoration losses to separate the identity feature of the morphing accomplice. By exploiting the captured facial image (containing the criminal's identity) from the face recognition system and the morphed image stored in the e-passport system (containing both criminal and accomplice's identities), the FD-GAN can effectively restore the accomplice's facial image. Experimental results and analysis demonstrate the effectiveness of the proposed scheme. It has great potential to be applied for tracing the identity of face morphing attack's accomplice in criminal investigation and judicial forensics.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
12 June 2024
Pages
72
ISBN
9786207652488

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Face morphing attack is proved to be a serious threat to the existing face recognition systems. Although a few face morphing detection methods have been put forward, the face morphing accomplice's facial restoration remains a challenging problem. In this paper, a face de- morphing generative adversarial network (FD-GAN) is proposed to restore the accomplice's facial image. It utilizes a symmetric dual network architecture and two levels of restoration losses to separate the identity feature of the morphing accomplice. By exploiting the captured facial image (containing the criminal's identity) from the face recognition system and the morphed image stored in the e-passport system (containing both criminal and accomplice's identities), the FD-GAN can effectively restore the accomplice's facial image. Experimental results and analysis demonstrate the effectiveness of the proposed scheme. It has great potential to be applied for tracing the identity of face morphing attack's accomplice in criminal investigation and judicial forensics.

Read More
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
12 June 2024
Pages
72
ISBN
9786207652488