Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

 
Paperback

Introduction to the Theory and Structures of Modules

$62.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The concepts of module or quotient module have similar perspectives of motivations with the definition of a factor or a quotient ring. The additive abelian structure is induced by the additive structure on it. The projective modules are duals of the injective modules. Every free module is projective. This is another way of saying that the projective modules are generalizations of the free modules. Further, any projective module is a direct summand of a free module. Thus, the injective modules generally possess the property that every R - module is a submodule of an injective module. The major role of the infinite cyclic group is taken over by the additive group of R. This happens in a group with R as the operator ring. Suppose that R is considered as a right R - module, selection can be made as generator, the unit element of R or any divisor of the unit element. The direct sum of an arbitrary set of such groups will usually be called a free R - module.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
13 December 2024
Pages
52
ISBN
9786205510223

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The concepts of module or quotient module have similar perspectives of motivations with the definition of a factor or a quotient ring. The additive abelian structure is induced by the additive structure on it. The projective modules are duals of the injective modules. Every free module is projective. This is another way of saying that the projective modules are generalizations of the free modules. Further, any projective module is a direct summand of a free module. Thus, the injective modules generally possess the property that every R - module is a submodule of an injective module. The major role of the infinite cyclic group is taken over by the additive group of R. This happens in a group with R as the operator ring. Suppose that R is considered as a right R - module, selection can be made as generator, the unit element of R or any divisor of the unit element. The direct sum of an arbitrary set of such groups will usually be called a free R - module.

Read More
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
13 December 2024
Pages
52
ISBN
9786205510223