Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The concepts of module or quotient module have similar perspectives of motivations with the definition of a factor or a quotient ring. The additive abelian structure is induced by the additive structure on it. The projective modules are duals of the injective modules. Every free module is projective. This is another way of saying that the projective modules are generalizations of the free modules. Further, any projective module is a direct summand of a free module. Thus, the injective modules generally possess the property that every R - module is a submodule of an injective module. The major role of the infinite cyclic group is taken over by the additive group of R. This happens in a group with R as the operator ring. Suppose that R is considered as a right R - module, selection can be made as generator, the unit element of R or any divisor of the unit element. The direct sum of an arbitrary set of such groups will usually be called a free R - module.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The concepts of module or quotient module have similar perspectives of motivations with the definition of a factor or a quotient ring. The additive abelian structure is induced by the additive structure on it. The projective modules are duals of the injective modules. Every free module is projective. This is another way of saying that the projective modules are generalizations of the free modules. Further, any projective module is a direct summand of a free module. Thus, the injective modules generally possess the property that every R - module is a submodule of an injective module. The major role of the infinite cyclic group is taken over by the additive group of R. This happens in a group with R as the operator ring. Suppose that R is considered as a right R - module, selection can be made as generator, the unit element of R or any divisor of the unit element. The direct sum of an arbitrary set of such groups will usually be called a free R - module.