Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Cardiovascular diseases are common these days to every age group of patient. The early stage prediction may help in adapting healthy lifestyle so that high risk of life threat can be avoided. The researchers are continuously finding links from existing data sources so that heart diseases can be predicted at early stages. There are proven data mining techniques such as decision trees, support vector machine, logistic regression useful in prognosis of heart disease. This research focuses on predicting hear diseases using support vector machine and linear regression technique. The Cleveland heart disease dataset is used as sample dataset to find accuracy of these two chosen techniques. The comparison shows that logistic regression gives accurate results than support vector machine on heart disease dataset. The research analysis is conducted in R script where Cleveland Heart Disease Dataset is analyzed and two models (SVM, logistic regression) are implemented using R. The project concentrates on applying Support Vector Machine and Logistic Regression techniques on the above mentioned dataset.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Cardiovascular diseases are common these days to every age group of patient. The early stage prediction may help in adapting healthy lifestyle so that high risk of life threat can be avoided. The researchers are continuously finding links from existing data sources so that heart diseases can be predicted at early stages. There are proven data mining techniques such as decision trees, support vector machine, logistic regression useful in prognosis of heart disease. This research focuses on predicting hear diseases using support vector machine and linear regression technique. The Cleveland heart disease dataset is used as sample dataset to find accuracy of these two chosen techniques. The comparison shows that logistic regression gives accurate results than support vector machine on heart disease dataset. The research analysis is conducted in R script where Cleveland Heart Disease Dataset is analyzed and two models (SVM, logistic regression) are implemented using R. The project concentrates on applying Support Vector Machine and Logistic Regression techniques on the above mentioned dataset.