Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
The investigation of photoelectric phenomena in the terahertz frequency range is a powerful tool to study nonequilibrium processes in low-dimensional structures. In this work, non-linear high frequency transport phenomena in graphene driven by the free-carrier absorption of electromagnetic radiation are explored. It is demonstrated that in the presence of adatoms and/or a substrate, as well as in the vicinity of graphene edges the carriers exhibit a directed motion in response to the alternating electric field of the terahertz radiation. Moreover, it is sown that these photoelectric phenomena can be giantly enhanced if graphene is deposited on a substrate with a negative dielectric constant. Novel models of the photocurrent generation are developed to describe the nonequilibrium processes in the purest two-dimensional material. The experiments together with the theoretical considerations give access to fundamental properties of graphene.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
The investigation of photoelectric phenomena in the terahertz frequency range is a powerful tool to study nonequilibrium processes in low-dimensional structures. In this work, non-linear high frequency transport phenomena in graphene driven by the free-carrier absorption of electromagnetic radiation are explored. It is demonstrated that in the presence of adatoms and/or a substrate, as well as in the vicinity of graphene edges the carriers exhibit a directed motion in response to the alternating electric field of the terahertz radiation. Moreover, it is sown that these photoelectric phenomena can be giantly enhanced if graphene is deposited on a substrate with a negative dielectric constant. Novel models of the photocurrent generation are developed to describe the nonequilibrium processes in the purest two-dimensional material. The experiments together with the theoretical considerations give access to fundamental properties of graphene.