Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Quiver D-Modules and the Riemann-Hilbert Correspondence
Paperback

Quiver D-Modules and the Riemann-Hilbert Correspondence

$185.99
Sign in or become a Readings Member to add this title to your wishlist.

In this thesis, we show that every regular singular holonomic D-module in Cn whose singular locus is a normal crossing is isomorphic to a quiver D-module – a D-module whose definition is based on certain representations of the hypercube quiver. To be more precise we give an equivalence of the respective categories. Additionally in dimension 1, we recompute the list of basic indecomposable regular singular holonomic D-modules by Boutet de Monvel using indecomposable quiver representations and our equivalence of categories. Our definition of quiver D-modules is based on the one of Khoroshkin and Varchenko in the case of a normal crossing hyperplane arrangement. To prove the equivalence of categories, we use an equivalence by Galligo, Granger and Maisonobe for regular singular holonomic D-modules whose singular locus is a normal crossing which involves the classical Riemann-Hilbert correspondence.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Logos Verlag Berlin GmbH
Country
Germany
Date
10 September 2015
Pages
81
ISBN
9783832540845

In this thesis, we show that every regular singular holonomic D-module in Cn whose singular locus is a normal crossing is isomorphic to a quiver D-module – a D-module whose definition is based on certain representations of the hypercube quiver. To be more precise we give an equivalence of the respective categories. Additionally in dimension 1, we recompute the list of basic indecomposable regular singular holonomic D-modules by Boutet de Monvel using indecomposable quiver representations and our equivalence of categories. Our definition of quiver D-modules is based on the one of Khoroshkin and Varchenko in the case of a normal crossing hyperplane arrangement. To prove the equivalence of categories, we use an equivalence by Galligo, Granger and Maisonobe for regular singular holonomic D-modules whose singular locus is a normal crossing which involves the classical Riemann-Hilbert correspondence.

Read More
Format
Paperback
Publisher
Logos Verlag Berlin GmbH
Country
Germany
Date
10 September 2015
Pages
81
ISBN
9783832540845