Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The book systematically provides the reader with a broad range of systems/research work to date that addresses the importance of combining numerical and symbolic approaches to reasoning under uncertainty in complex applications. It covers techniques on how to extend propositional logic to a probabilistic one and compares such derived probabilistic logic with closely related mechanisms, namely evidence theory, assumption-based truth maintenance systems and rough sets, in terms of representing and reasoning with knowledge and evidence. The book primarily addresses researchers, practitioners, students and lecturers in the field of Artificial Intelligence, particularly in the areas of reasoning under uncertainty, logic, knowledge representation and reasoning, and non-monotonic reasoning.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The book systematically provides the reader with a broad range of systems/research work to date that addresses the importance of combining numerical and symbolic approaches to reasoning under uncertainty in complex applications. It covers techniques on how to extend propositional logic to a probabilistic one and compares such derived probabilistic logic with closely related mechanisms, namely evidence theory, assumption-based truth maintenance systems and rough sets, in terms of representing and reasoning with knowledge and evidence. The book primarily addresses researchers, practitioners, students and lecturers in the field of Artificial Intelligence, particularly in the areas of reasoning under uncertainty, logic, knowledge representation and reasoning, and non-monotonic reasoning.