Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book is designed to present some recent results on some nonlinear parabolic-hyp- bolic coupled systems arising from physics, mechanics and material science such as the compressible Navier-Stokes equations, thermo(visco)elastic systems and elastic systems. Some of the content of this book is based on research carried out by the author and his collaborators in recent years. Most of it has been previously published only in original papers,andsomeofthematerialhasneverbeenpublisheduntilnow.Therefore,theauthor hopes that the book will bene?t both the interested beginner in the ?eld and the expert. AllthemodelsunderconsiderationinChapters2-10arebuiltonnonlinearevolution equations that are parabolic-hyperbolic coupled systems of partial differential equations with time t as one of the independentvariables. This type of partial differential equations arises not only in many ?elds of mathematics, but also in other branches of science such as physics, mechanics and materials science, etc. For example, some models studied in this book, such as the compressible Navier-Stokes equations (a 1D heat conductive v- cous real gas and a polytropic ideal gas) from ?uid mechanics, and thermo(visco)elastic systemsfrommaterialsscience, are typicalexamplesof nonlinearevolutionaryequations. It is well known that the properties of solutions to nonlinear parabolic-hyperbolic coupledsystems are very different from those of parabolicor hyperbolicequations. Since the 1970s,more andmore mathematicianshave begunto focustheir interests onthe study of local well-posedness, global well-posedness and blow-up of solutions in a ?nite time.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book is designed to present some recent results on some nonlinear parabolic-hyp- bolic coupled systems arising from physics, mechanics and material science such as the compressible Navier-Stokes equations, thermo(visco)elastic systems and elastic systems. Some of the content of this book is based on research carried out by the author and his collaborators in recent years. Most of it has been previously published only in original papers,andsomeofthematerialhasneverbeenpublisheduntilnow.Therefore,theauthor hopes that the book will bene?t both the interested beginner in the ?eld and the expert. AllthemodelsunderconsiderationinChapters2-10arebuiltonnonlinearevolution equations that are parabolic-hyperbolic coupled systems of partial differential equations with time t as one of the independentvariables. This type of partial differential equations arises not only in many ?elds of mathematics, but also in other branches of science such as physics, mechanics and materials science, etc. For example, some models studied in this book, such as the compressible Navier-Stokes equations (a 1D heat conductive v- cous real gas and a polytropic ideal gas) from ?uid mechanics, and thermo(visco)elastic systemsfrommaterialsscience, are typicalexamplesof nonlinearevolutionaryequations. It is well known that the properties of solutions to nonlinear parabolic-hyperbolic coupledsystems are very different from those of parabolicor hyperbolicequations. Since the 1970s,more andmore mathematicianshave begunto focustheir interests onthe study of local well-posedness, global well-posedness and blow-up of solutions in a ?nite time.