Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Classification of time series is an important task in various fields, e.g., medicine, finance, and industrial applications. This work discusses strong temporal classification using machine learning techniques. Here, two problems must be solved: the detection of those time instances when the class labels change and the correct assignment of the labels. For this purpose the scenario-based random forest algorithm and a segment and label approach are introduced. The latter is realized with either the augmented dynamic time warping similarity measure or with interpretable generalized radial basis function classifiers. The main application presented in this work is the detection and categorization of car crashes using machine learning. Depending on the crash severity different safety systems, e.g., belt tensioners or airbags must be deployed at time instances when the best-possible protection of passengers is assured.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Classification of time series is an important task in various fields, e.g., medicine, finance, and industrial applications. This work discusses strong temporal classification using machine learning techniques. Here, two problems must be solved: the detection of those time instances when the class labels change and the correct assignment of the labels. For this purpose the scenario-based random forest algorithm and a segment and label approach are introduced. The latter is realized with either the augmented dynamic time warping similarity measure or with interpretable generalized radial basis function classifiers. The main application presented in this work is the detection and categorization of car crashes using machine learning. Depending on the crash severity different safety systems, e.g., belt tensioners or airbags must be deployed at time instances when the best-possible protection of passengers is assured.