Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
"Machine Learning Technology in Biomedical Engineering" aims to provide a platform for researchers to showcase their latest research and findings on the application of machine learning technology in the field of biomedical engineering. The use of machine learning technology in healthcare has been growing rapidly in recent years and has the potential to revolutionize multiple aspects of healthcare, including disease diagnosis, treatment, and personalized medicine. This Special Issue covers a wide range of topics related to the application of machine learning in biomedical engineering, including predictive modelling, image and signal processing, deep learning, drug discovery, biomarker discovery, and medical decision making. By applying machine learning algorithms to large datasets of biomedical information, researchers and healthcare professionals can gain new insights into disease mechanisms, identify new biomarkers for disease, and develop more effective treatments. Machine learning algorithms can also be used to improve medical imaging analysis, automate medical diagnosis and decision making, and optimize drug-discovery processes. This Special Issue is significant because it encourages interdisciplinary collaboration between machine learning and biomedical-engineering researchers.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
"Machine Learning Technology in Biomedical Engineering" aims to provide a platform for researchers to showcase their latest research and findings on the application of machine learning technology in the field of biomedical engineering. The use of machine learning technology in healthcare has been growing rapidly in recent years and has the potential to revolutionize multiple aspects of healthcare, including disease diagnosis, treatment, and personalized medicine. This Special Issue covers a wide range of topics related to the application of machine learning in biomedical engineering, including predictive modelling, image and signal processing, deep learning, drug discovery, biomarker discovery, and medical decision making. By applying machine learning algorithms to large datasets of biomedical information, researchers and healthcare professionals can gain new insights into disease mechanisms, identify new biomarkers for disease, and develop more effective treatments. Machine learning algorithms can also be used to improve medical imaging analysis, automate medical diagnosis and decision making, and optimize drug-discovery processes. This Special Issue is significant because it encourages interdisciplinary collaboration between machine learning and biomedical-engineering researchers.