Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Fault diagnosis of induction motor fed by frequency converter. The signal signature analysis technique
Paperback

Fault diagnosis of induction motor fed by frequency converter. The signal signature analysis technique

$187.99
Sign in or become a Readings Member to add this title to your wishlist.

Thesis (M.A.) from the year 2013 in the subject Electrotechnology, Warsaw University of Technology (Electrical Engineering), language: English, abstract: 3-Phase induction motors are widely used as a source of mechanical power for effective operation and low costs. The abnormalities have to be detected in advance to avoid the motor breakdown and the cost associated restrain of plant production. This work discusses current and flux leakage spectral analysis techniques for the diagnosis of broken rotor bars and shortcircuited turns in induction motor fed from different AC sources. In spite of recent development of various types of models toward motor faults diagnosis and examining different problems associated with 3-phase induction motors the signal spectral analysis is considered as one of most important approaches. Most of the models from simple equivalent circuit to more complex d-q and a-b-c models and lastly developed hybrid models are provided for the integration of different forms of current and/or voltage unbalance. Generally, techniques that relate to asymmetry identify asymmetrical motor faults. Frequency converters in many applications feed induction motors. Such applications, which play a major role in industry, are growing at a high rate, allow to use 3-phase induction motor as variable speed applications. This paper proposes application of spectral signature analysis for the detection and diagnosis of abnormal electrical and mechanical conditions, which indicates chosen faults in induction motor fed by frequency converter.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Grin Publishing
Date
18 August 2016
Pages
84
ISBN
9783668273863

Thesis (M.A.) from the year 2013 in the subject Electrotechnology, Warsaw University of Technology (Electrical Engineering), language: English, abstract: 3-Phase induction motors are widely used as a source of mechanical power for effective operation and low costs. The abnormalities have to be detected in advance to avoid the motor breakdown and the cost associated restrain of plant production. This work discusses current and flux leakage spectral analysis techniques for the diagnosis of broken rotor bars and shortcircuited turns in induction motor fed from different AC sources. In spite of recent development of various types of models toward motor faults diagnosis and examining different problems associated with 3-phase induction motors the signal spectral analysis is considered as one of most important approaches. Most of the models from simple equivalent circuit to more complex d-q and a-b-c models and lastly developed hybrid models are provided for the integration of different forms of current and/or voltage unbalance. Generally, techniques that relate to asymmetry identify asymmetrical motor faults. Frequency converters in many applications feed induction motors. Such applications, which play a major role in industry, are growing at a high rate, allow to use 3-phase induction motor as variable speed applications. This paper proposes application of spectral signature analysis for the detection and diagnosis of abnormal electrical and mechanical conditions, which indicates chosen faults in induction motor fed by frequency converter.

Read More
Format
Paperback
Publisher
Grin Publishing
Date
18 August 2016
Pages
84
ISBN
9783668273863