Inverse Problems of Lidar Sensing of the Atmosphere, V.E. Zuev,I.E. Naats (9783662135396) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Inverse Problems of Lidar Sensing of the Atmosphere
Paperback

Inverse Problems of Lidar Sensing of the Atmosphere

$138.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This monograph undertakes to present systematically the methods for solving inverse problems of lidar sensing of the atmosphere, with emphasis on lidar techniques that are based on the use of light scattering by aerosols. The theory of multi-frequency lidar sensing, as a new method for studying the microphysical and optical characteristics of aerosol formations, is also pre sented in detail. The possibilities of this theory are illustrated by the experimental results on microstructure analysis of tropospheric and low stratospheric aerosols obtained with ground-based two- and three-frequency lidars. The lidar facilities used in these experimental studies were construc ted at the Institute of Atmospheric Optics S8 USSR Academy of Sciences. Some aspects of remote control of dispersed air pollution using lidar systems are also considered. A rigorous theory for inverting the data of polarization lidar measure ments is discussed, along with its application to remote measurement of the complex index of refraction of aerosol substances and the microstructure pa rameters of background aerosols using double-ended lidar schemes. Solutions to such important problems as the separation of contributions due to Rayleigh molecular and Mie-aerosol light scattering into the total backscatter are ob tained by using this theory. Lidar polarization measurements are shown to be useful in this case. The efficiency of the methods suggested here for inter preting the lidar polarization measurements is illustrated by experimental results on the investigation of the microphysical parameters of natural aero sols and artificial smokes using polarization nephelometers.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
3 October 2013
Pages
262
ISBN
9783662135396

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This monograph undertakes to present systematically the methods for solving inverse problems of lidar sensing of the atmosphere, with emphasis on lidar techniques that are based on the use of light scattering by aerosols. The theory of multi-frequency lidar sensing, as a new method for studying the microphysical and optical characteristics of aerosol formations, is also pre sented in detail. The possibilities of this theory are illustrated by the experimental results on microstructure analysis of tropospheric and low stratospheric aerosols obtained with ground-based two- and three-frequency lidars. The lidar facilities used in these experimental studies were construc ted at the Institute of Atmospheric Optics S8 USSR Academy of Sciences. Some aspects of remote control of dispersed air pollution using lidar systems are also considered. A rigorous theory for inverting the data of polarization lidar measure ments is discussed, along with its application to remote measurement of the complex index of refraction of aerosol substances and the microstructure pa rameters of background aerosols using double-ended lidar schemes. Solutions to such important problems as the separation of contributions due to Rayleigh molecular and Mie-aerosol light scattering into the total backscatter are ob tained by using this theory. Lidar polarization measurements are shown to be useful in this case. The efficiency of the methods suggested here for inter preting the lidar polarization measurements is illustrated by experimental results on the investigation of the microphysical parameters of natural aero sols and artificial smokes using polarization nephelometers.

Read More
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
3 October 2013
Pages
262
ISBN
9783662135396