Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Effective Decision Tree Algorithm For Reality Mining
Paperback

Effective Decision Tree Algorithm For Reality Mining

$59.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This project work deals with reality mining and decision tree. Reality mining is the collection and analysis of data where human social behavior is analyzed through machine-sensed environment, with the goal of identifying predictable patterns of behavior. Classification is the process of finding a model that describe and distinguishes data classes, with the purpose of using model to predict the class of objects whose class label is unknown. A decision tree is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. ID3 is mathematical algorithm for building the decision tree. It builds the tree from the top down recursive divide-and-conquer manner, with no backtracking. Advantages of ID3 are it build fast and short tree. Disadvantage is data may be over fitted and over classified if a small sample is tested. Only one attribute at a time is tested for making decision. This project work: - To study the drawback of existing decision tree algorithms. To compare the decision tree with R using existing implementation. To apply and study the decision tree with reality minin

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Country
United States
Date
13 February 2014
Pages
68
ISBN
9783659516276

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This project work deals with reality mining and decision tree. Reality mining is the collection and analysis of data where human social behavior is analyzed through machine-sensed environment, with the goal of identifying predictable patterns of behavior. Classification is the process of finding a model that describe and distinguishes data classes, with the purpose of using model to predict the class of objects whose class label is unknown. A decision tree is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. ID3 is mathematical algorithm for building the decision tree. It builds the tree from the top down recursive divide-and-conquer manner, with no backtracking. Advantages of ID3 are it build fast and short tree. Disadvantage is data may be over fitted and over classified if a small sample is tested. Only one attribute at a time is tested for making decision. This project work: - To study the drawback of existing decision tree algorithms. To compare the decision tree with R using existing implementation. To apply and study the decision tree with reality minin

Read More
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Country
United States
Date
13 February 2014
Pages
68
ISBN
9783659516276