Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

 
Paperback

Unveiling the Black Box

$118.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Unveiling the Black Box: Practical Deep Learning and Explainable AI" offers a comprehensive overview of Explainable AI (XAI) techniques and their significance in ensuring transparency and trust in complex AI models. With AI applications spanning healthcare, finance, and autonomous systems, the opacity of deep learning models often raises ethical, legal, and reliability concerns. This guide explores foundational AI model structures, such as Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN), highlighting their architecture, functionality, and real-world applications. To enhance interpretability, the text introduces leading XAI methods like Local Interpretable Model-Agnostic Explanations (LIME) and SHAPley Additive Explanations (SHAP), which enable users to understand model predictions. Advanced techniques, including Transfer Learning and Attention Mechanisms, are discussed to illustrate their impact on neural network adaptability and performance. The challenges of achieving interpretable AI, such as managing bias, balancing accuracy, and ensuring privacy, are also addressed.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
28 October 2024
Pages
192
ISBN
9783659396700

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Unveiling the Black Box: Practical Deep Learning and Explainable AI" offers a comprehensive overview of Explainable AI (XAI) techniques and their significance in ensuring transparency and trust in complex AI models. With AI applications spanning healthcare, finance, and autonomous systems, the opacity of deep learning models often raises ethical, legal, and reliability concerns. This guide explores foundational AI model structures, such as Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN), highlighting their architecture, functionality, and real-world applications. To enhance interpretability, the text introduces leading XAI methods like Local Interpretable Model-Agnostic Explanations (LIME) and SHAPley Additive Explanations (SHAP), which enable users to understand model predictions. Advanced techniques, including Transfer Learning and Attention Mechanisms, are discussed to illustrate their impact on neural network adaptability and performance. The challenges of achieving interpretable AI, such as managing bias, balancing accuracy, and ensuring privacy, are also addressed.

Read More
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
28 October 2024
Pages
192
ISBN
9783659396700