Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Danica Heller-Krippendorf develops concepts and approaches optimizing the applicability of MVA on data sets from an industrial context. They enable more time-efficient MVA of the respective ToF-SIMS data. Priority is given to two main aspects by the author: First, the focus is on strategies for a more time-efficient collection of the input data. This includes the optimal selection of the number of replicate measurements, the selection of input data and guidelines for the selection appropriate data preprocessing methods. Second, strategies for more efficient analysis of MVA results are presented.
About the Author:
Danica Heller-Krippendorf did her research and dissertation at the University of Siegen, Germany, in collaboration with a German analytical service company. Now she is engineer in analytics at a DAX company.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Danica Heller-Krippendorf develops concepts and approaches optimizing the applicability of MVA on data sets from an industrial context. They enable more time-efficient MVA of the respective ToF-SIMS data. Priority is given to two main aspects by the author: First, the focus is on strategies for a more time-efficient collection of the input data. This includes the optimal selection of the number of replicate measurements, the selection of input data and guidelines for the selection appropriate data preprocessing methods. Second, strategies for more efficient analysis of MVA results are presented.
About the Author:
Danica Heller-Krippendorf did her research and dissertation at the University of Siegen, Germany, in collaboration with a German analytical service company. Now she is engineer in analytics at a DAX company.