Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Bachelor Thesis from the year 2014 in the subject Computer Science - Bioinformatics, grade: 165/200 (A+), language: English, abstract: Aim: I sought to determine trauma-specific transcriptomic signatures for septic sub-cohorts. Methods: In retrospective large-scale data analysis, I applied (old and new methods), including lagged correlation between transcripts and clinical subtype counts (by integrating over 800 samples from trauma patients). Results: Focussing on novel pathways and correlation methods we revealed (persistently down-regulated) ribosomal genes and changed time profiles of metabolic enzyme precursors /transcripts. Candidates associated to insulin signalling, including HK3, hinted towards metabolic syndrome. Correlation analysis yielded robust results for LCN2 and LTF (r>0.9), but only moderate associations to subtype counts (e.g. top-performing r (Eosinophil, IL5RA)>0.6). Discussion: Gene Centred Normalisation Reduces Ambiguity and Improves Interpretation.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Bachelor Thesis from the year 2014 in the subject Computer Science - Bioinformatics, grade: 165/200 (A+), language: English, abstract: Aim: I sought to determine trauma-specific transcriptomic signatures for septic sub-cohorts. Methods: In retrospective large-scale data analysis, I applied (old and new methods), including lagged correlation between transcripts and clinical subtype counts (by integrating over 800 samples from trauma patients). Results: Focussing on novel pathways and correlation methods we revealed (persistently down-regulated) ribosomal genes and changed time profiles of metabolic enzyme precursors /transcripts. Candidates associated to insulin signalling, including HK3, hinted towards metabolic syndrome. Correlation analysis yielded robust results for LCN2 and LTF (r>0.9), but only moderate associations to subtype counts (e.g. top-performing r (Eosinophil, IL5RA)>0.6). Discussion: Gene Centred Normalisation Reduces Ambiguity and Improves Interpretation.