Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Mathematische Hilfsmittel des Ingenieurs
Paperback

Mathematische Hilfsmittel des Ingenieurs

$178.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

234 Originalvariable x nur ganzzahlige Werte annimmt, dann ist das Integral durch eine unendliche Summe zu ersetzen. Einige der im folgenden behandelten Transformationen gehOren zu diesen beiden Typen. Da wir nUr lineare Transformationen betrachten, wird spiiter die Eigenschaft der Linearitat nicht mehr eigens erwahnt. � 2. Der Hilbertsche Raum L2 Bei einer Integraitransformation HiBt man i. aUg. als Original- funktionen aUe I (x) zu, fur die das Integral existiert. Manche Eigen- schaften der Transformation lassen sich aber nUr dann exakt formu- lieren und beweisen, wenn man die I (x) auf engere Raume beschrankt, die durch innere, von der Transformation unabhangige Eigenschaften charakterisiert sind. In dieser Beziehung ist der Raum der quadratisch l integrablen Funktionen am wichtigsten . Dieser laBt sich auffassen als Analogon zu dem Euklidischen Raum Rn von n Dimensionen, in dem sich die Variablen der gew6hnlichen Funktionen bewegen. Der Rn ist dadurch ausgezeichnet, daB in ihm die Distanz zweier Punkte Xl = (Xll’ —, Xl II), X2 = (X21> –., X2 n) als die positive Wurzel aus n d (Xl, X2)2 = (Xl v - X2v)2 . -1 definiert ist. Es liegt nahe, im Raum der in dem endlichen oder unend- lichen IntervaU (a, b) definierten Funktionen die Distanz zweier Ele- 2 mente 11, 12 durch den entsprechenden Ausdruck b d (11, 12)2 = jill (X) - 12 (X) 12 dx a zu definieren. Insbesondere ist die Distanz einer Funktion I (x) vom NuUpunkt, d. h.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
31 July 2012
Pages
688
ISBN
9783642950988

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

234 Originalvariable x nur ganzzahlige Werte annimmt, dann ist das Integral durch eine unendliche Summe zu ersetzen. Einige der im folgenden behandelten Transformationen gehOren zu diesen beiden Typen. Da wir nUr lineare Transformationen betrachten, wird spiiter die Eigenschaft der Linearitat nicht mehr eigens erwahnt. � 2. Der Hilbertsche Raum L2 Bei einer Integraitransformation HiBt man i. aUg. als Original- funktionen aUe I (x) zu, fur die das Integral existiert. Manche Eigen- schaften der Transformation lassen sich aber nUr dann exakt formu- lieren und beweisen, wenn man die I (x) auf engere Raume beschrankt, die durch innere, von der Transformation unabhangige Eigenschaften charakterisiert sind. In dieser Beziehung ist der Raum der quadratisch l integrablen Funktionen am wichtigsten . Dieser laBt sich auffassen als Analogon zu dem Euklidischen Raum Rn von n Dimensionen, in dem sich die Variablen der gew6hnlichen Funktionen bewegen. Der Rn ist dadurch ausgezeichnet, daB in ihm die Distanz zweier Punkte Xl = (Xll’ —, Xl II), X2 = (X21> –., X2 n) als die positive Wurzel aus n d (Xl, X2)2 = (Xl v - X2v)2 . -1 definiert ist. Es liegt nahe, im Raum der in dem endlichen oder unend- lichen IntervaU (a, b) definierten Funktionen die Distanz zweier Ele- 2 mente 11, 12 durch den entsprechenden Ausdruck b d (11, 12)2 = jill (X) - 12 (X) 12 dx a zu definieren. Insbesondere ist die Distanz einer Funktion I (x) vom NuUpunkt, d. h.

Read More
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
31 July 2012
Pages
688
ISBN
9783642950988