Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
1 2 D. FITZGERALDI, I. PASTAN , and J. ROBERTUS Introduction … … … … . I 2 Toxin Structure-Function Properties 2 2. 1 Functions… … … … … … … … 2 2. 2 Binding… … … … … … … … . 3 3 Intracellular Processing - Cleavage and Reduction … … 4 3. 1 Cytosolic Activity … … … … … . 5 4 Immunotoxin Design and Testing. 6 5 Conclusion. . 8 References… . . 8 1 Introduction While various treatment approaches for cancer include reversal of the transformed phenotype, stimulation of immune responses, inhibition of metastatic spread and deprivation of key nutrients, the goal of immunotoxin treatment is the direct killing of malignant cells. Because they are enzymatic proteins that act catalytically to kill cells, bacterial and plant toxins are often employed as the cell-killing component of immunotoxins. Here we provide background information into the structure-func tion relationships of toxins and discuss how they can be combined with cell-binding antibodies or other ligands to generate immunotoxins. Bacterial and plant toxins (e. g. , diphtheria toxin, Pseudomonas exotoxin and ricin) are among the most toxic substances known. However, because they bind to cell surface receptors that are present on most normal cells, unmodified toxins are generally useless as anti-cancer agents. To convert toxins into more selective agents, their binding domains are either eliminated or disabled and replaceq with cell binding antibodies that are tumor-selective.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
1 2 D. FITZGERALDI, I. PASTAN , and J. ROBERTUS Introduction … … … … . I 2 Toxin Structure-Function Properties 2 2. 1 Functions… … … … … … … … 2 2. 2 Binding… … … … … … … … . 3 3 Intracellular Processing - Cleavage and Reduction … … 4 3. 1 Cytosolic Activity … … … … … . 5 4 Immunotoxin Design and Testing. 6 5 Conclusion. . 8 References… . . 8 1 Introduction While various treatment approaches for cancer include reversal of the transformed phenotype, stimulation of immune responses, inhibition of metastatic spread and deprivation of key nutrients, the goal of immunotoxin treatment is the direct killing of malignant cells. Because they are enzymatic proteins that act catalytically to kill cells, bacterial and plant toxins are often employed as the cell-killing component of immunotoxins. Here we provide background information into the structure-func tion relationships of toxins and discuss how they can be combined with cell-binding antibodies or other ligands to generate immunotoxins. Bacterial and plant toxins (e. g. , diphtheria toxin, Pseudomonas exotoxin and ricin) are among the most toxic substances known. However, because they bind to cell surface receptors that are present on most normal cells, unmodified toxins are generally useless as anti-cancer agents. To convert toxins into more selective agents, their binding domains are either eliminated or disabled and replaceq with cell binding antibodies that are tumor-selective.