Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The past decade has been a period of explosion of knowledge on the chemistry and pharmacology of snake toxins. Thanks to the development of protein chemistry, nearly a hundred snake toxins have been purified and sequenced, representing one of the largest families of sequenced proteins. Moreover, the mode of action of these toxins has been largely elucidated by the concerted efforts of pharmacologists, electro physiologists, and biochemists. As a result of these studies, some of the snake toxins, e.g., a-bungarotoxin and cobra neurotoxins, have been extensively used as specific markers in the study of the acetylcholine receptors. Indeed, without the discovery of these snake toxins, our knowledge of the structure and function of nicotinic acetylcholine receptors would not have advanced so rapidly. The contribution of snake venom research to the biomedical sciences is not limited to the study of cholinergic receptors. Being one of the most concentrated enzyme sources in nature, snake venoms are also valuable tools in biochemical research. Venom phosphodiesterase, for example, has been widely used for structural studies of nucleic acids; proteinase, for the sequence studies of proteins and pep tides ; phospholipase A , for lipid research; and L-amino acid oxidase for identifying optical z isomers of amino acids. Furthermore, snake venoms have proven to be useful agents for clarifying some basic concepts on blood coagulation and some venom enzymes, e.g., thrombin-like enzymes and pro coagulants have been used as therapeutic agents.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The past decade has been a period of explosion of knowledge on the chemistry and pharmacology of snake toxins. Thanks to the development of protein chemistry, nearly a hundred snake toxins have been purified and sequenced, representing one of the largest families of sequenced proteins. Moreover, the mode of action of these toxins has been largely elucidated by the concerted efforts of pharmacologists, electro physiologists, and biochemists. As a result of these studies, some of the snake toxins, e.g., a-bungarotoxin and cobra neurotoxins, have been extensively used as specific markers in the study of the acetylcholine receptors. Indeed, without the discovery of these snake toxins, our knowledge of the structure and function of nicotinic acetylcholine receptors would not have advanced so rapidly. The contribution of snake venom research to the biomedical sciences is not limited to the study of cholinergic receptors. Being one of the most concentrated enzyme sources in nature, snake venoms are also valuable tools in biochemical research. Venom phosphodiesterase, for example, has been widely used for structural studies of nucleic acids; proteinase, for the sequence studies of proteins and pep tides ; phospholipase A , for lipid research; and L-amino acid oxidase for identifying optical z isomers of amino acids. Furthermore, snake venoms have proven to be useful agents for clarifying some basic concepts on blood coagulation and some venom enzymes, e.g., thrombin-like enzymes and pro coagulants have been used as therapeutic agents.