Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The invention of quantum groups is one of the outstanding achievements of mathematical physics and mathematics in the late twentieth century. The birth of the new theory and its rapid development are results of a strong interrelation between mathematics and physics. Quantu~ groups arose in the work of L.D. Faddeev and the Leningrad school on the inverse scattering method in order to solve integrable models. The algebra Uq(sh) appeared first in 1981 in a paper by P.P. Kulish and N.Yu. Reshetikhin on the study of integrable XYZ models with highest spin. Its Hopf algebra structure was discovered later by E.K. Sklyanin. A major event was the discovery by V.G. Drinfeld and M. Jimbo around 1985 of a class of Hopf algebras which can be considered as one-parameter deforma- tions of universal enveloping algebras of semisimple complex Lie algebras. These Hopf algebras will be called Drinfeld-Jimbo algebras in this book. Al- most simultaneously, S.L. Woronowicz invented the quantum group SUq(2) and developed his theory of compact quantum matrix groups. An algebraic approach to quantized coordinate algebras was given about this time by Yu.I. Manin.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The invention of quantum groups is one of the outstanding achievements of mathematical physics and mathematics in the late twentieth century. The birth of the new theory and its rapid development are results of a strong interrelation between mathematics and physics. Quantu~ groups arose in the work of L.D. Faddeev and the Leningrad school on the inverse scattering method in order to solve integrable models. The algebra Uq(sh) appeared first in 1981 in a paper by P.P. Kulish and N.Yu. Reshetikhin on the study of integrable XYZ models with highest spin. Its Hopf algebra structure was discovered later by E.K. Sklyanin. A major event was the discovery by V.G. Drinfeld and M. Jimbo around 1985 of a class of Hopf algebras which can be considered as one-parameter deforma- tions of universal enveloping algebras of semisimple complex Lie algebras. These Hopf algebras will be called Drinfeld-Jimbo algebras in this book. Al- most simultaneously, S.L. Woronowicz invented the quantum group SUq(2) and developed his theory of compact quantum matrix groups. An algebraic approach to quantized coordinate algebras was given about this time by Yu.I. Manin.