Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
449 one finds that for y = Fo (e) C= :n; V3 [Po (2'Yj) 3 -kjF(i) + (2'Yj)! Fd (2'Yj) 3 -ijF (*m, } 1 ( 14.17) C2 = :n; [ - (2'Yj)! Fd (2'Yj) 3 -ijF(i) + Fo (2'Yj) 3 -~;r(i)J, and if y is to be Go(e), C and Chave the same form with Go (2'Yj) replacing Po (2'Yj) 1 2 and G~(2'Yj) replacing Fd(2'Yj). The values of the functions at eo =2'Yj may be ob- tained from (14.8). 1 J. K. TYSON has employed the modified Hankel functions of order one- third 2 as solutions of (13.4) to obtain expressions for the Coulomb functions for L =0 which converge near e =2'Yj. His results appear as linear combinations of the real and imaginary parts of n ~(x) = (12)!e-;/6 [A;{- x) - iB;(-x)J, (14.18) and its derivatives multiplying power series in x = (e - 2'Yj)j(2'Yj)1. For values 1 away from the turning point for L =0, TYSON has obtained forms for Po{e) and Go(e) which are similar to (13.1) to (13.3). The JWKB approximation is again the leading term, and some higher order corrections are given. Expressions similar to Eqs. (14.11) and (14.12) have been obtained by T.D. 3 NEWTON employing the integral representation of (4.4). His results give re- presentations of FL(e), Gde) in the vicinity of e=2'Yj [whereas (14.11), (14.12) converge near e=eLJ when L
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
449 one finds that for y = Fo (e) C= :n; V3 [Po (2'Yj) 3 -kjF(i) + (2'Yj)! Fd (2'Yj) 3 -ijF (*m, } 1 ( 14.17) C2 = :n; [ - (2'Yj)! Fd (2'Yj) 3 -ijF(i) + Fo (2'Yj) 3 -~;r(i)J, and if y is to be Go(e), C and Chave the same form with Go (2'Yj) replacing Po (2'Yj) 1 2 and G~(2'Yj) replacing Fd(2'Yj). The values of the functions at eo =2'Yj may be ob- tained from (14.8). 1 J. K. TYSON has employed the modified Hankel functions of order one- third 2 as solutions of (13.4) to obtain expressions for the Coulomb functions for L =0 which converge near e =2'Yj. His results appear as linear combinations of the real and imaginary parts of n ~(x) = (12)!e-;/6 [A;{- x) - iB;(-x)J, (14.18) and its derivatives multiplying power series in x = (e - 2'Yj)j(2'Yj)1. For values 1 away from the turning point for L =0, TYSON has obtained forms for Po{e) and Go(e) which are similar to (13.1) to (13.3). The JWKB approximation is again the leading term, and some higher order corrections are given. Expressions similar to Eqs. (14.11) and (14.12) have been obtained by T.D. 3 NEWTON employing the integral representation of (4.4). His results give re- presentations of FL(e), Gde) in the vicinity of e=2'Yj [whereas (14.11), (14.12) converge near e=eLJ when L