Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Machine learning builds models of the world using training data from the application domain and prior knowledge about the problem. The models are later applied to future data in order to estimate the current state of the world. An implied assumption is that the future is stochastically similar to the past. The approach fails when the system encounters situations that are not anticipated from the past experience. In contrast, successful natural organisms identify new unanticipated stimuli and situations and frequently generate appropriate responses.
The observation described above lead to the initiation of the DIRAC EC project in 2006. In 2010 a workshop was held, aimed to bring together researchers and students from different disciplines in order to present and discuss new approaches for identifying and reacting to unexpected events in information-rich environments. This book includes a summary of the achievements of the DIRAC project in chapter 1, and a collection of the papers presented in this workshop in the remaining parts.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Machine learning builds models of the world using training data from the application domain and prior knowledge about the problem. The models are later applied to future data in order to estimate the current state of the world. An implied assumption is that the future is stochastically similar to the past. The approach fails when the system encounters situations that are not anticipated from the past experience. In contrast, successful natural organisms identify new unanticipated stimuli and situations and frequently generate appropriate responses.
The observation described above lead to the initiation of the DIRAC EC project in 2006. In 2010 a workshop was held, aimed to bring together researchers and students from different disciplines in order to present and discuss new approaches for identifying and reacting to unexpected events in information-rich environments. This book includes a summary of the achievements of the DIRAC project in chapter 1, and a collection of the papers presented in this workshop in the remaining parts.