Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Evolvable Systems: From Biology to Hardware: 9th International Conference, ICES 2010, York, UK, September 6-8, 2010, Proceedings
Paperback

Evolvable Systems: From Biology to Hardware: 9th International Conference, ICES 2010, York, UK, September 6-8, 2010, Proceedings

$197.99
Sign in or become a Readings Member to add this title to your wishlist.

Biology has inspired electronics from the very beginning: the machines that we now call computers are deeply rooted in biological metaphors. Pioneers such as Alan Turing and John von Neumann openly declared their aim of creating arti?cial machines that could mimic some of the behaviors exhibited by natural organisms. Unfortunately, technology had not progressed enough to allow them to put their ideas into practice. The 1990s saw the introduction of programmable devices, both digital (FP- GAs) and analogue (FPAAs). These devices, by allowing the functionality and the structure of electronic devices to be easily altered, enabled researchers to endow circuits with some of the same versatility exhibited by biological entities and sparked a renaissance in the ?eld of bio-inspired electronics with the birth of what is generally known as evolvable hardware. Eversince,the?eldhasprogressedalongwiththetechnologicalimprovements and has expanded to take into account many di?erent biological processes, from evolution to learning, from development to healing. Of course, the application of these processes to electronic devices is not always straightforward (to say the least!), but rather than being discouraged, researchers in the community have shown remarkable ingenuity, as demostrated by the variety of approaches presented at this conference and included in these proceedings.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
30 August 2010
Pages
394
ISBN
9783642153228

Biology has inspired electronics from the very beginning: the machines that we now call computers are deeply rooted in biological metaphors. Pioneers such as Alan Turing and John von Neumann openly declared their aim of creating arti?cial machines that could mimic some of the behaviors exhibited by natural organisms. Unfortunately, technology had not progressed enough to allow them to put their ideas into practice. The 1990s saw the introduction of programmable devices, both digital (FP- GAs) and analogue (FPAAs). These devices, by allowing the functionality and the structure of electronic devices to be easily altered, enabled researchers to endow circuits with some of the same versatility exhibited by biological entities and sparked a renaissance in the ?eld of bio-inspired electronics with the birth of what is generally known as evolvable hardware. Eversince,the?eldhasprogressedalongwiththetechnologicalimprovements and has expanded to take into account many di?erent biological processes, from evolution to learning, from development to healing. Of course, the application of these processes to electronic devices is not always straightforward (to say the least!), but rather than being discouraged, researchers in the community have shown remarkable ingenuity, as demostrated by the variety of approaches presented at this conference and included in these proceedings.

Read More
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
30 August 2010
Pages
394
ISBN
9783642153228