Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In many areas in engineering, economics and science new developments are only possible by the application of modern optimization methods. Theoptimizationproblemsarisingnowadaysinapplicationsaremostly multiobjective, i.e. many competing objectives are aspired all at once. These optimization problems with a vector-valued objective function have in opposition to scalar-valued problems generally not only one minimal solution but the solution set is very large. Thus the devel- ment of e?cient numerical methods for special classes of multiobj- tive optimization problems is, due to the complexity of the solution set, of special interest. This relevance is pointed out in many recent publications in application areas such as medicine ([63, 118, 100, 143]), engineering([112,126,133,211,224],referencesin[81]),environmental decision making ([137, 227]) or economics ([57, 65, 217, 234]). Consideringmultiobjectiveoptimizationproblemsdemands?rstthe de?nition of minimality for such problems. A ?rst minimality notion traces back to Edgeworth [59], 1881, and Pareto [180], 1896, using the naturalorderingintheimagespace.A?rstmathematicalconsideration ofthistopicwasdonebyKuhnandTucker[144]in1951.Sincethattime multiobjective optimization became an active research ? eld. Several books and survey papers have been published giving introductions to this topic, for instance [28, 60, 66, 76, 112, 124, 165, 188, 189, 190, 215]. Inthelastdecadesthemainfocuswasonthedevelopmentofinteractive methods for determining one single solution in an iterative process.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In many areas in engineering, economics and science new developments are only possible by the application of modern optimization methods. Theoptimizationproblemsarisingnowadaysinapplicationsaremostly multiobjective, i.e. many competing objectives are aspired all at once. These optimization problems with a vector-valued objective function have in opposition to scalar-valued problems generally not only one minimal solution but the solution set is very large. Thus the devel- ment of e?cient numerical methods for special classes of multiobj- tive optimization problems is, due to the complexity of the solution set, of special interest. This relevance is pointed out in many recent publications in application areas such as medicine ([63, 118, 100, 143]), engineering([112,126,133,211,224],referencesin[81]),environmental decision making ([137, 227]) or economics ([57, 65, 217, 234]). Consideringmultiobjectiveoptimizationproblemsdemands?rstthe de?nition of minimality for such problems. A ?rst minimality notion traces back to Edgeworth [59], 1881, and Pareto [180], 1896, using the naturalorderingintheimagespace.A?rstmathematicalconsideration ofthistopicwasdonebyKuhnandTucker[144]in1951.Sincethattime multiobjective optimization became an active research ? eld. Several books and survey papers have been published giving introductions to this topic, for instance [28, 60, 66, 76, 112, 124, 165, 188, 189, 190, 215]. Inthelastdecadesthemainfocuswasonthedevelopmentofinteractive methods for determining one single solution in an iterative process.