Transfer Function for Single-Phase Gas Flow in Fractured Reservoirs, Ehsan Ranjbar,Zhangxin Chen (9783639716078) — Readings Books

Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

In Victoria? Order in-stock items by Sunday 14 December to get your gifts by Christmas! Or find the deadline for your state here.

Transfer Function for Single-Phase Gas Flow in Fractured Reservoirs
Paperback

Transfer Function for Single-Phase Gas Flow in Fractured Reservoirs

$120.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Modeling of matrix-fracture transfer function is important in the simulation of fluid flow in fractured porous media using a dual-porosity concept. One of the main focuses of this book is to find the transfer function for the single-phase flow of compressible fluids in fractured media using the solution of nonlinear gas diffusivity equation. The developed shape factor and transfer function can be used as an input for modeling flow of compressible fluids in dual-porosity systems. Another major purpose of this study is to investigate the effect of the fracture pressure depletion regime on the shape factor and transfer function for single-phase flow of a compressible fluid. For accurate prediction of fluid transfer between the matrix and fracture systems the effect of variable block size distribution should be considered. The proposed model is also able to simulate fluid exchange between matrix and fracture for continuous or discrete block size distributions. This solution can be simplified to model flow of slightly compressible fluids like water or oil in dual-porosity (fractured porous) media.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO

Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.

Format
Paperback
Publisher
Scholars' Press
Country
United States
Date
19 May 2014
Pages
200
ISBN
9783639716078

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Modeling of matrix-fracture transfer function is important in the simulation of fluid flow in fractured porous media using a dual-porosity concept. One of the main focuses of this book is to find the transfer function for the single-phase flow of compressible fluids in fractured media using the solution of nonlinear gas diffusivity equation. The developed shape factor and transfer function can be used as an input for modeling flow of compressible fluids in dual-porosity systems. Another major purpose of this study is to investigate the effect of the fracture pressure depletion regime on the shape factor and transfer function for single-phase flow of a compressible fluid. For accurate prediction of fluid transfer between the matrix and fracture systems the effect of variable block size distribution should be considered. The proposed model is also able to simulate fluid exchange between matrix and fracture for continuous or discrete block size distributions. This solution can be simplified to model flow of slightly compressible fluids like water or oil in dual-porosity (fractured porous) media.

Read More
Format
Paperback
Publisher
Scholars' Press
Country
United States
Date
19 May 2014
Pages
200
ISBN
9783639716078