Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Stochastic Inverse Regression and Reproducing Kernel Hilbert Space
Paperback

Stochastic Inverse Regression and Reproducing Kernel Hilbert Space

$73.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The basic philosophy of Functional Data Analysis (FDA) is to think of the observed data functions as elements of a possibly infinite-dimensional function space. Most of the current research topics on FDA focus on advancing theoretical tools and extending existing multivariate techniques to accommodate the infinite-dimensional nature of data. This monograph reports contributions on both fronts, where a unifying inverse regression theory for both the multivariate setting and functional data from a Reproducing Kernel Hilbert Space (RKHS) prospective is developed. We proposed a stochastic multiple-index model, two RKHS-related inverse regression procedures, a slicing’‘ approach and a kernel approach, as well as an asymptotic theory were introduced to the statistical framework. Some general computational issues of FDA were discussed, Some general computational issues of FDA were discussed, which led to smoothed versions of the stochastic inverse regression methods.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
VDM Verlag Dr. Muller Aktiengesellschaft & Co. KG
Country
Germany
Date
9 July 2009
Pages
112
ISBN
9783639177923

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The basic philosophy of Functional Data Analysis (FDA) is to think of the observed data functions as elements of a possibly infinite-dimensional function space. Most of the current research topics on FDA focus on advancing theoretical tools and extending existing multivariate techniques to accommodate the infinite-dimensional nature of data. This monograph reports contributions on both fronts, where a unifying inverse regression theory for both the multivariate setting and functional data from a Reproducing Kernel Hilbert Space (RKHS) prospective is developed. We proposed a stochastic multiple-index model, two RKHS-related inverse regression procedures, a slicing’‘ approach and a kernel approach, as well as an asymptotic theory were introduced to the statistical framework. Some general computational issues of FDA were discussed, Some general computational issues of FDA were discussed, which led to smoothed versions of the stochastic inverse regression methods.

Read More
Format
Paperback
Publisher
VDM Verlag Dr. Muller Aktiengesellschaft & Co. KG
Country
Germany
Date
9 July 2009
Pages
112
ISBN
9783639177923