Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Towards Mutual Understanding Among Ontologies - Rule-Based and Learning-Based Matching Algorithms for Ontologies
Paperback

Towards Mutual Understanding Among Ontologies - Rule-Based and Learning-Based Matching Algorithms for Ontologies

$88.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Ontologies are formal, declarative knowledge representation models, forming a semantic foundation for many domains. As the Semantic Web gains attention as the next generation of the Web, ontologies’ importance increases accordingly. Different ontologies are heterogeneous, which can lead to misunderstandings, so there is a need for them to be related. The suggested approaches can be categorized as either rule-based or learning-based. The former works on ontology schemas, and the latter considers both schemas and instances. This book makes 6 assumptions to bound the matching problem, then presents 3 systems towards the mutual reconciliation of concepts from different ontologies: (1) the Puzzle system belongs to the rule-based approach; (2) the SOCCER (Similar Ontology Concept ClustERing) system is mostly a learning-based solution, integrated with some rule-based techniques; and (3) the Compatibility Vector system, although not an ontology-matching algorithm by itself, instead is a means of measuring and maintaining ontology compatibility, which helps in the mutual understanding of ontologies and determines the compatibility of services (or agents) associated with these ontologies.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
VDM Verlag Dr. Muller Aktiengesellschaft & Co. KG
Country
Germany
Date
30 December 2008
Pages
132
ISBN
9783639115567

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Ontologies are formal, declarative knowledge representation models, forming a semantic foundation for many domains. As the Semantic Web gains attention as the next generation of the Web, ontologies’ importance increases accordingly. Different ontologies are heterogeneous, which can lead to misunderstandings, so there is a need for them to be related. The suggested approaches can be categorized as either rule-based or learning-based. The former works on ontology schemas, and the latter considers both schemas and instances. This book makes 6 assumptions to bound the matching problem, then presents 3 systems towards the mutual reconciliation of concepts from different ontologies: (1) the Puzzle system belongs to the rule-based approach; (2) the SOCCER (Similar Ontology Concept ClustERing) system is mostly a learning-based solution, integrated with some rule-based techniques; and (3) the Compatibility Vector system, although not an ontology-matching algorithm by itself, instead is a means of measuring and maintaining ontology compatibility, which helps in the mutual understanding of ontologies and determines the compatibility of services (or agents) associated with these ontologies.

Read More
Format
Paperback
Publisher
VDM Verlag Dr. Muller Aktiengesellschaft & Co. KG
Country
Germany
Date
30 December 2008
Pages
132
ISBN
9783639115567