Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In this book, a new Generalized Discontinuous Galerkin (GDG) method for Schrodinger equations with nonsmooth solutions is proposed. The numerical method is based on a reformulation of Schrodinger equations, using split distributional variables and their related integration by parts formulae to account for solution jumps across material interfaces. GDG can handle time dependent and general nonlinear jump conditions. And numerical results validate the high order accuracy and the flexibility of the method for various types of interface conditions. As one of GDG’s application, a new vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) for wave propagations in inhomogeneous optical waveguides is also included. The resulting GDG-BPM takes on four formulations for either electric or magnetic field. GDG-BPM’s unique feature of handling interface jump conditions and its flexibility in modeling wave propagations in inhomogeneous optical fibers is shown by various numerical results.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In this book, a new Generalized Discontinuous Galerkin (GDG) method for Schrodinger equations with nonsmooth solutions is proposed. The numerical method is based on a reformulation of Schrodinger equations, using split distributional variables and their related integration by parts formulae to account for solution jumps across material interfaces. GDG can handle time dependent and general nonlinear jump conditions. And numerical results validate the high order accuracy and the flexibility of the method for various types of interface conditions. As one of GDG’s application, a new vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) for wave propagations in inhomogeneous optical waveguides is also included. The resulting GDG-BPM takes on four formulations for either electric or magnetic field. GDG-BPM’s unique feature of handling interface jump conditions and its flexibility in modeling wave propagations in inhomogeneous optical fibers is shown by various numerical results.