Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book is concerned primarily with the theory of Banach lattices and with linear operators defined on, or with values in, Banach lattices. More general classes of Riesz spaces are considered so long as this does not lead to more complicated constructions or proofs. The intentions for writing this book were twofold. First, there appeared in the literature many results completing the theory extensively. On the other hand, new techniques systematically applied here for the first time lead to surprisingly simple and short proofs of many results originally known as deep. These new methods are purely elementary: they directly yield the Banach lattice versions of theorems which then include the classical theorems in a trivial manner. In particular the book covers: Riesz spaces, normed Riesz spaces, C(K)-and Mspaces, Banach function spaces, Lpspaces, tensor products of Banach lattices, Grothendieck spaces; positive and regular operators, extensions of positive operators, disjointness-preserving operators, operators on L- and M-spaces, kernel operators, weakly compact operators and generalizations, Dunford-Pettis operators and spaces, irreducible operators; order continuity of norms, p-subadditive norms; spectral theory, order spectrum; embeddings of C; the Radon-Nikodym property; measures of non-compactness. This textbook on functional analysis, operator theory and measure theory is intended for advanced students and researchers.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book is concerned primarily with the theory of Banach lattices and with linear operators defined on, or with values in, Banach lattices. More general classes of Riesz spaces are considered so long as this does not lead to more complicated constructions or proofs. The intentions for writing this book were twofold. First, there appeared in the literature many results completing the theory extensively. On the other hand, new techniques systematically applied here for the first time lead to surprisingly simple and short proofs of many results originally known as deep. These new methods are purely elementary: they directly yield the Banach lattice versions of theorems which then include the classical theorems in a trivial manner. In particular the book covers: Riesz spaces, normed Riesz spaces, C(K)-and Mspaces, Banach function spaces, Lpspaces, tensor products of Banach lattices, Grothendieck spaces; positive and regular operators, extensions of positive operators, disjointness-preserving operators, operators on L- and M-spaces, kernel operators, weakly compact operators and generalizations, Dunford-Pettis operators and spaces, irreducible operators; order continuity of norms, p-subadditive norms; spectral theory, order spectrum; embeddings of C; the Radon-Nikodym property; measures of non-compactness. This textbook on functional analysis, operator theory and measure theory is intended for advanced students and researchers.