Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
These Lecture Notes arose from discussions we had over a working paper written by the first author in fall 1987. We decided then to write a short paper about the basic structure of evolutionary stability and found ourselves ending up with a book manuscript. Parts of the material contained herein were presented in a seminar at the Department of Mathematics at the University of Vienna, as well as at a workshop on evolutionary game theory in Bielefeld. The final version of the manuscript has certainly benefitted from critical comments and suggestions by the participants of both the seminar and the workshop. Thanks are also due to S. Bomze-de Barba, R. Burger, G. Danninger, J. Hofbauer, R. Selten, K. Sigmund, G. Stiastny and F. Weising. The co-operation of W. Muller from Springer Verlag, Heidelberg, is gratefully acknowledged. Vienna, November 1988 Immanuel M. Bomze Benedikt M. Potscher III Contents 1. Introduction 1 2. Strategies and payoffs 5 2. 1. A general setting for evolutionary game theory 6 2. 2. Mixed strategies and population games 8 2. 3. Finite number of strategies … . . 13 2. 4. Infinitely many (pure) strategies 15 2. 5. Structured populations: asymmetric contests and multitype games 17 2. 6. Additional remarks … … … … … … … 21 3. Evolutionary stability 25 3. 1. Definition of evolutionary stability 25 3. 2. Evolutionary stability and solution concepts in classical game theory 30 3. 3. Conditions for evolutionary stability based on the normal cone 31 3. 4.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
These Lecture Notes arose from discussions we had over a working paper written by the first author in fall 1987. We decided then to write a short paper about the basic structure of evolutionary stability and found ourselves ending up with a book manuscript. Parts of the material contained herein were presented in a seminar at the Department of Mathematics at the University of Vienna, as well as at a workshop on evolutionary game theory in Bielefeld. The final version of the manuscript has certainly benefitted from critical comments and suggestions by the participants of both the seminar and the workshop. Thanks are also due to S. Bomze-de Barba, R. Burger, G. Danninger, J. Hofbauer, R. Selten, K. Sigmund, G. Stiastny and F. Weising. The co-operation of W. Muller from Springer Verlag, Heidelberg, is gratefully acknowledged. Vienna, November 1988 Immanuel M. Bomze Benedikt M. Potscher III Contents 1. Introduction 1 2. Strategies and payoffs 5 2. 1. A general setting for evolutionary game theory 6 2. 2. Mixed strategies and population games 8 2. 3. Finite number of strategies … . . 13 2. 4. Infinitely many (pure) strategies 15 2. 5. Structured populations: asymmetric contests and multitype games 17 2. 6. Additional remarks … … … … … … … 21 3. Evolutionary stability 25 3. 1. Definition of evolutionary stability 25 3. 2. Evolutionary stability and solution concepts in classical game theory 30 3. 3. Conditions for evolutionary stability based on the normal cone 31 3. 4.