Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

The Coordinate-Free Approach to Gauss-Markov Estimation
Paperback

The Coordinate-Free Approach to Gauss-Markov Estimation

$138.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

These notes originate from a couple of lectures which were given in the Econometric Workshop of the Center for Operations Research and Econometrics (CORE) at the Catholic University of Louvain. The participants of the seminars were recommended to read the first four chapters of Seber’s book [40], but the exposition of the material went beyond Seber’s exposition, if it seemed necessary. Coordinate-free methods are not new in Gauss-Markov estimation, besides Seber the work of Kolmogorov [11], SCheffe [36], Kruskal [21], [22] and Malinvaud [25], [26] should be mentioned. Malinvaud’s approach however is a little different from that of the other authors, because his optimality criterion is based on the ellipsoid of c- centration. This criterion is however equivalent to the usual c- cept of minimal covariance-matrix and therefore the result must be the same in both cases. While the usual theory gives no indication how small the covariance-matrix can be made before the optimal es timator is computed, Malinvaud can show how small the ellipsoid of concentration can be made: it is at most equal to the intersection of the ellipssoid of concentration of the observed random vector and the linear space in which the (unknown) expectation value of the observed random vector is lying. This exposition is based on the observation, that in regression ~nalysis and related fields two conclusions are or should preferably be applied repeatedly.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
1 January 1970
Pages
118
ISBN
9783540053262

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

These notes originate from a couple of lectures which were given in the Econometric Workshop of the Center for Operations Research and Econometrics (CORE) at the Catholic University of Louvain. The participants of the seminars were recommended to read the first four chapters of Seber’s book [40], but the exposition of the material went beyond Seber’s exposition, if it seemed necessary. Coordinate-free methods are not new in Gauss-Markov estimation, besides Seber the work of Kolmogorov [11], SCheffe [36], Kruskal [21], [22] and Malinvaud [25], [26] should be mentioned. Malinvaud’s approach however is a little different from that of the other authors, because his optimality criterion is based on the ellipsoid of c- centration. This criterion is however equivalent to the usual c- cept of minimal covariance-matrix and therefore the result must be the same in both cases. While the usual theory gives no indication how small the covariance-matrix can be made before the optimal es timator is computed, Malinvaud can show how small the ellipsoid of concentration can be made: it is at most equal to the intersection of the ellipssoid of concentration of the observed random vector and the linear space in which the (unknown) expectation value of the observed random vector is lying. This exposition is based on the observation, that in regression ~nalysis and related fields two conclusions are or should preferably be applied repeatedly.

Read More
Format
Paperback
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Country
Germany
Date
1 January 1970
Pages
118
ISBN
9783540053262