Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Neurobiology of Cognitive Learning
Paperback

Neurobiology of Cognitive Learning

$138.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

In the brain information is coded into sequences of impulses which are unit responses travelling from neurones or nerve cells along nerve fibres. The neural code is equivalent to a Morse code of dots only in a great variety of temporal patterns and with thousands of connections in parallel. Fig. lA is a diagram of Figure 1: Drawing of Four Neurones of the Cerebral Cortex. This shows the excitatory synaptic connections set up by an input fibre from the thalamus labelled (spec. aff. ), which is an enormous nucleus in the brain that provides the principal inputs to the cerebral cortex. This spec. aff. fibre branches profusely to make excitatory synapses on the spiny stellate cell (Sst) and on one pyramidal cell (Pyr). All three pyramidal cells receive on their spines excitatory synapses from Sst, and there is a special excitatory structure, called by Szentagothai a cartridge, formed by the synaptic endings on the apical dendrites of two pyramidal cells. All three pyramidal cells but not the Sst, send their axons out of the cerebral cortex as shown by the lower projecting arrows. The upper inset shows an enlargement of a spine synapse with synaptic vesicles in the presynaptic ending and the spine arising from a dendrite. The lower two insets show diagrammatically normal and hypertrophied spine synapses. (SZENTAGOTHAI, 1978).

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer Fachmedien Wiesbaden
Country
Germany
Date
1 January 1992
Pages
19
ISBN
9783531083926

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

In the brain information is coded into sequences of impulses which are unit responses travelling from neurones or nerve cells along nerve fibres. The neural code is equivalent to a Morse code of dots only in a great variety of temporal patterns and with thousands of connections in parallel. Fig. lA is a diagram of Figure 1: Drawing of Four Neurones of the Cerebral Cortex. This shows the excitatory synaptic connections set up by an input fibre from the thalamus labelled (spec. aff. ), which is an enormous nucleus in the brain that provides the principal inputs to the cerebral cortex. This spec. aff. fibre branches profusely to make excitatory synapses on the spiny stellate cell (Sst) and on one pyramidal cell (Pyr). All three pyramidal cells receive on their spines excitatory synapses from Sst, and there is a special excitatory structure, called by Szentagothai a cartridge, formed by the synaptic endings on the apical dendrites of two pyramidal cells. All three pyramidal cells but not the Sst, send their axons out of the cerebral cortex as shown by the lower projecting arrows. The upper inset shows an enlargement of a spine synapse with synaptic vesicles in the presynaptic ending and the spine arising from a dendrite. The lower two insets show diagrammatically normal and hypertrophied spine synapses. (SZENTAGOTHAI, 1978).

Read More
Format
Paperback
Publisher
Springer Fachmedien Wiesbaden
Country
Germany
Date
1 January 1992
Pages
19
ISBN
9783531083926