Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Enables researchers and engineers to gain insights into the capabilities of machine learning approaches to power applications in their fields
Machine Learning and Big Data-enabled Biotechnology discusses how machine learning and big data can be used in biotechnology for a wide breadth of topics, providing tools essential to support efforts in process control, reactor performance evaluation, and research target identification.
Topics explored in Machine Learning and Big Data-enabled Biotechnology include:
Deep learning approaches for synthetic biology part design and automated approaches for GSM development from DNA sequences De novo protein structure and design tools, pathway discovery and retrobiosynthesis, enzyme functional classifications, and proteomics machine learning approaches Metabolomics big data approaches, metabolic production, strain engineering, flux design, and use of generative AI and natural language processing for cell models Automated function and learning in biofoundries and strain designs Machine learning predictions of phenotype and bioreactor performance
Machine Learning and Big Data-enabled Biotechnology earns a well-deserved spot on the bookshelves of reaction, process, catalytic, and environmental engineers seeking to explore the vast opportunities presented by rapidly developing technologies.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Enables researchers and engineers to gain insights into the capabilities of machine learning approaches to power applications in their fields
Machine Learning and Big Data-enabled Biotechnology discusses how machine learning and big data can be used in biotechnology for a wide breadth of topics, providing tools essential to support efforts in process control, reactor performance evaluation, and research target identification.
Topics explored in Machine Learning and Big Data-enabled Biotechnology include:
Deep learning approaches for synthetic biology part design and automated approaches for GSM development from DNA sequences De novo protein structure and design tools, pathway discovery and retrobiosynthesis, enzyme functional classifications, and proteomics machine learning approaches Metabolomics big data approaches, metabolic production, strain engineering, flux design, and use of generative AI and natural language processing for cell models Automated function and learning in biofoundries and strain designs Machine learning predictions of phenotype and bioreactor performance
Machine Learning and Big Data-enabled Biotechnology earns a well-deserved spot on the bookshelves of reaction, process, catalytic, and environmental engineers seeking to explore the vast opportunities presented by rapidly developing technologies.