Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Machine Learning in Protein Science
Hardback

Machine Learning in Protein Science

$454.99
Sign in or become a Readings Member to add this title to your wishlist.

Aimed at researchers in the molecular life sciences, this unique reference summarizes current approaches for harnessing the power of machine learning for more efficient full quantum mechanical (FQM) calculations in protein systems. Application examples range from property calculations (energy, force field, stability, protein-protein interaction, thermostability, molecular dynamics) to protein structure prediction to protein design and the optimization of enzymatic activity. From a methodological point of view, the practical reference covers the most important machine learning models and algorithms, from deep neural network (DNN) and transfer learning (TL) to hybrid unsupervised and supervised learning.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Wiley-VCH Verlag GmbH
Country
DE
Date
15 December 2025
Pages
320
ISBN
9783527352159

Aimed at researchers in the molecular life sciences, this unique reference summarizes current approaches for harnessing the power of machine learning for more efficient full quantum mechanical (FQM) calculations in protein systems. Application examples range from property calculations (energy, force field, stability, protein-protein interaction, thermostability, molecular dynamics) to protein structure prediction to protein design and the optimization of enzymatic activity. From a methodological point of view, the practical reference covers the most important machine learning models and algorithms, from deep neural network (DNN) and transfer learning (TL) to hybrid unsupervised and supervised learning.

Read More
Format
Hardback
Publisher
Wiley-VCH Verlag GmbH
Country
DE
Date
15 December 2025
Pages
320
ISBN
9783527352159