Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Interesting patterns for clustering high-dimensional data
Paperback

Interesting patterns for clustering high-dimensional data

$45.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Recent advances in data mining allow for exploiting patterns as the primary means for clustering and classifying large collections of data. In this thesis, we present three advances in pattern-based clustering technology, an advance in semi-supervised pattern-based classification, and a related advance in pattern frequency counting. In our first contribution, we analyze numerous deficiencies with traditional patternsignificance measures such as support and confidence, and propose a web image clustering algorithm that uses an objective interestingness measure to identify significant patterns, yielding measurably better clustering quality.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Gordon M. Redwine
Date
2 May 2023
Pages
168
ISBN
9783427330684

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Recent advances in data mining allow for exploiting patterns as the primary means for clustering and classifying large collections of data. In this thesis, we present three advances in pattern-based clustering technology, an advance in semi-supervised pattern-based classification, and a related advance in pattern frequency counting. In our first contribution, we analyze numerous deficiencies with traditional patternsignificance measures such as support and confidence, and propose a web image clustering algorithm that uses an objective interestingness measure to identify significant patterns, yielding measurably better clustering quality.

Read More
Format
Paperback
Publisher
Gordon M. Redwine
Date
2 May 2023
Pages
168
ISBN
9783427330684