Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The book offers a detailed guide to temporal ordering, exploring open problems in the field and providing solutions and extensive analysis. It addresses the challenge of automatically ordering events and times in text. Aided by TimeML, it also describes and presents concepts relating to time in easy-to-compute terms. Working out the order that events and times happen has proven difficult for computers, since the language used to discuss time can be vague and complex. Mapping out these concepts for a computational system, which does not have its own inherent idea of time, is, unsurprisingly, tough. Solving this problem enables powerful systems that can plan, reason about events, and construct stories of their own accord, as well as understand the complex narratives that humans express and comprehend so naturally.
This book presents a theory and data-driven analysis of temporal ordering, leading to the identification of exactly what is difficult about the task. It then proposes and evaluates machine-learning solutions for the major difficulties.
It is a valuable resource for those working in machine learning for natural language processing as well as anyone studying time in language, or involved in annotating the structure of time in documents.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Stock availability can be subject to change without notice. We recommend calling the shop or contacting our online team to check availability of low stock items. Please see our Shopping Online page for more details.
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The book offers a detailed guide to temporal ordering, exploring open problems in the field and providing solutions and extensive analysis. It addresses the challenge of automatically ordering events and times in text. Aided by TimeML, it also describes and presents concepts relating to time in easy-to-compute terms. Working out the order that events and times happen has proven difficult for computers, since the language used to discuss time can be vague and complex. Mapping out these concepts for a computational system, which does not have its own inherent idea of time, is, unsurprisingly, tough. Solving this problem enables powerful systems that can plan, reason about events, and construct stories of their own accord, as well as understand the complex narratives that humans express and comprehend so naturally.
This book presents a theory and data-driven analysis of temporal ordering, leading to the identification of exactly what is difficult about the task. It then proposes and evaluates machine-learning solutions for the major difficulties.
It is a valuable resource for those working in machine learning for natural language processing as well as anyone studying time in language, or involved in annotating the structure of time in documents.