Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In this thesis, the ionization of atoms and small molecules in strong laser fields is experimentally studied using a reaction microscope. The population of autoionizing doubly excited states in the laser fields is proven and a possible connection to the well-known dielectronic recombination processes is discussed. The fundamental process of tunnel ionization in strong laser fields is subject of investigation in a pump-probe experiment with ultrashort laser pulses. A coherent superposition of electronic states in singly charged argon ions is created within the first, and subsequently tunnel-ionized with the second pulse. This gives access to state-selective information about the tunneling process and allows to test common models. Moreover, the ionization of krypton and argon at different wavelengths is studied, from the multiphoton to the tunneling regime. The wavelength-dependent investigations are furthermore extended to molecular hydrogen. In addition to ionization, this system might undergo different dissociative processes. Channel-selective electron momentum distributions are presented and compared to each other.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In this thesis, the ionization of atoms and small molecules in strong laser fields is experimentally studied using a reaction microscope. The population of autoionizing doubly excited states in the laser fields is proven and a possible connection to the well-known dielectronic recombination processes is discussed. The fundamental process of tunnel ionization in strong laser fields is subject of investigation in a pump-probe experiment with ultrashort laser pulses. A coherent superposition of electronic states in singly charged argon ions is created within the first, and subsequently tunnel-ionized with the second pulse. This gives access to state-selective information about the tunneling process and allows to test common models. Moreover, the ionization of krypton and argon at different wavelengths is studied, from the multiphoton to the tunneling regime. The wavelength-dependent investigations are furthermore extended to molecular hydrogen. In addition to ionization, this system might undergo different dissociative processes. Channel-selective electron momentum distributions are presented and compared to each other.