Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book is the offspring of a summer school school Macroscopic and large scale
phenomena: coarse graining, mean field limits and ergodicity , which was held in 2012 at the University of Twente, the Netherlands. The focus lies on mathematically rigorous methods for multiscale problems of physical origins.
Each of the four book chapters is based on a set of lectures delivered at the school, yet all authors have expanded and refined their contributions.
Francois Golse delivers a chapter on the dynamics of large particle systems in the mean field limit and surveys the most significant tools and methods to establish such limits with mathematical rigor. Golse discusses in depth a variety of examples, including Vlasov–Poisson and Vlasov–Maxwell systems.
Lucia Scardia focuses on the rigorous derivation of macroscopic models using $\Gamma$-convergence, a more recent variational method, which has proved very powerful for problems in material science. Scardia illustrates this by various basic examples and a more advanced case study from dislocation theory.
Alexander Mielke’s contribution focuses on the multiscale modeling and rigorous analysis of generalized gradient systems through the new concept of evolutionary $\Gamma$-convergence. Numerous evocative examples are given, e.g., relating to periodic homogenization and the passage from viscous to dry friction.
Martin Goell and Evgeny Verbitskiy conclude this volume, taking a dynamical systems and ergodic theory viewpoint. They review recent developments in the study of homoclinic points for certain discrete dynamical systems, relating to particle systems via ergodic properties of lattices configurations.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This book is the offspring of a summer school school Macroscopic and large scale
phenomena: coarse graining, mean field limits and ergodicity , which was held in 2012 at the University of Twente, the Netherlands. The focus lies on mathematically rigorous methods for multiscale problems of physical origins.
Each of the four book chapters is based on a set of lectures delivered at the school, yet all authors have expanded and refined their contributions.
Francois Golse delivers a chapter on the dynamics of large particle systems in the mean field limit and surveys the most significant tools and methods to establish such limits with mathematical rigor. Golse discusses in depth a variety of examples, including Vlasov–Poisson and Vlasov–Maxwell systems.
Lucia Scardia focuses on the rigorous derivation of macroscopic models using $\Gamma$-convergence, a more recent variational method, which has proved very powerful for problems in material science. Scardia illustrates this by various basic examples and a more advanced case study from dislocation theory.
Alexander Mielke’s contribution focuses on the multiscale modeling and rigorous analysis of generalized gradient systems through the new concept of evolutionary $\Gamma$-convergence. Numerous evocative examples are given, e.g., relating to periodic homogenization and the passage from viscous to dry friction.
Martin Goell and Evgeny Verbitskiy conclude this volume, taking a dynamical systems and ergodic theory viewpoint. They review recent developments in the study of homoclinic points for certain discrete dynamical systems, relating to particle systems via ergodic properties of lattices configurations.