Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysis tool is the energy method. This book covers the difference methods for the initial-boundary value problems of twelve nonlinear partial differential equations. They are Fisher equation, Burgers' equation, regularized long-wave equation, Korteweg-de Vries equation, Camassa-Holm equation, Schroedinger equation, Kuramoto-Tsuzuki equation, Zakharov equation, Ginzburg-Landau equation, Cahn-Hilliard equation, epitaxial growth model and phase field crystal model. This book is a monograph for the graduate students and science researchers majoring in computational mathematics and applied mathematics. It will be also useful to all researchers in related disciplines.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysis tool is the energy method. This book covers the difference methods for the initial-boundary value problems of twelve nonlinear partial differential equations. They are Fisher equation, Burgers' equation, regularized long-wave equation, Korteweg-de Vries equation, Camassa-Holm equation, Schroedinger equation, Kuramoto-Tsuzuki equation, Zakharov equation, Ginzburg-Landau equation, Cahn-Hilliard equation, epitaxial growth model and phase field crystal model. This book is a monograph for the graduate students and science researchers majoring in computational mathematics and applied mathematics. It will be also useful to all researchers in related disciplines.